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ABSTRACT
Multi-modal clustering aims at finding a clustering structure shared

by the data of different modalities in an unsupervised way. Cur-

rently, solving this problem often relies on two assumptions: 𝑖)

the multi-modal data own the same latent distribution, and 𝑖𝑖) the

observed multi-modal data are well-aligned and without any miss-

ing modalities. Unfortunately, these two assumptions are often

questionable in practice and thus limit the feasibility of many multi-

modal clustering methods. In this work, we develop a new multi-

modal clustering method based on the Gromovization of optimal

transport distance, which relaxes the dependence on the above two

assumptions. In particular, given the data of different modalities,

whose correspondence is unknown, our method learns the Gromov-

Wasserstein (GW) barycenter of their kernel matrices. Driven by

the modularity maximization principle, the GW barycenter helps

to explore the clustering structure shared by different modalities.

Moreover, the GW barycenter is associated with the GW distances

between the different modalities to the clusters, and the optimal

transport plans corresponding to the GW distances help to achieve

the alignment and the clustering of the multi-modal data jointly.

Experimental results show that our method outperforms state-of-

the-art multi-modal clustering methods, especially when the data

are (partially or completely) unaligned. The code is available at

https://github.com/rucnyz/GWMAC.
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1 INTRODUCTION
Many real-world machine learning tasks involve exploring the

clustering structures of the unlabeled data collected from differ-

ent resources and in different formats, which leads to the so-called

“multi-modal clustering” problem. For precise medicine, the analysis

of a disease depends on the clustering of patients’ electronic health

records (EHRs) that contain heterogeneous data modalities like clin-

ical notes (texts), lab results (tablets), and medical images [71, 75].

For machine translation and multi-linguistic text classification, the

words of different languages should be matched and clustered ac-

cording to their semantics [19, 61]. Besides the above two examples,

multi-modal clustering is also significant for other practical ap-

plications, such as computer vision [32, 62] and cross-modal data

generation [43, 44].

To achieve multi-modal clustering, many methods have been

proposed, which can be coarsely categorized into two strategies:

co-regularization [26] and kernel fusion [15]. In particular, co-

regularization aims at learning latent representations shared by

different modalities and achieves clustering in the latent space

accordingly. The commonly-used latent representation methods

include canonical correlation analysis [5, 50], low-rank approxima-

tion [11, 16], non-negative matrix factorization [30, 76], and their

neural network-based variants [3, 28, 57, 78]. Kernel fusion, on the

other hand, aims at leveraging the relational information of dif-

ferent modalities jointly and fusing the information for clustering.

Typically, for the samples of each modality, their relational informa-

tion can be the graph structure [27, 54], the distance matrix [34, 39],

and so on. Based on the relational information, we can construct

and fuse the kernel matrices of different modalities [10, 49] and then

apply spectral clustering [38, 80] or k-means [12, 31] to achieve

multi-modal clustering.

Both of the above two strategies are dependent on two assump-

tions: 𝑖) the multi-modal data own the same latent distribution

or clustering structure, and 𝑖𝑖) the observed multi-modal data are

well-aligned and without any missing modalities. However, these

two assumptions are often questionable in practice. In particu-

lar, different modalities may contain complementary information,

and some modalities can even be useless in some tasks. Therefore,

their latent distributions can be different. Additionally, the real-

world multi-modal data can be collected from different resources

in different trials, and the samples of different modalities can be

independent and unaligned (i.e., the correspondence between the

samples of different modalities is unknown). For example, the EHRs
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Figure 1: An illustration of the proposed GWMAC method.

for disease analysis can be collected from the patients in different

hospitals. Each patient’s EHR may just contain the information of

partial modalities because of the lack of medical resources or the

restrictions of insurance coverage, and some modalities (e.g., lab

results, genetic tests) may be more important than the others (e.g.,

drug records) for disease diagnosis and patient clustering. Faced

with such practical and challenging multi-modal data, most ex-

isting multi-modal clustering methods either lead to sub-optimal

performance or become inapplicable.

To relax the dependency on the above two assumptions, we

propose a novel Gromov-Wasserstein multi-modal alignment and

clustering (GWMAC) method. As illustrated in Figure 1, our GW-

MAC method neither requires the observed multi-modal data to

be well-aligned nor restricts different modalities to share the same

latent distribution/structure. For the samples of each modality, it

derives their latent representations through a learnable encoder and

constructs a kernel matrix. Without the correspondence between

different modalities’ samples, our method fuses the kernel matrices

by solving a weighted Gromov-Wasserstein (GW) barycenter prob-

lem [42, 64]. The barycenter works as a fused kernel matrix, whose

GW distances to the kernel matrices are minimized. Different from

the work in [64], which learns the latent representation of graphs

based on a factorization model and applies K-means accordingly,

our method is built based on the modularity maximization principle

and thus can indicate the clustering structure of the data directly.

Additionally, solving the GW barycenter problem provides us with

a set of optimal transport plans to align the samples of different

modalities to the clusters.

Different from most existing multi-modal clustering methods,

our GWMAC achieves the alignment and the clustering of multi-

modal data jointly, which is applicable even if the multi-modal data

are totally unaligned. Additionally, our method does not require

the modalities to share the same latent distributions, because it is

based on the modalities’ kernel matrices rather than using their

latent codes directly. Note that, the weights associated with differ-

ent kernel matrices are learnable, so instead of treating different

modalities evenly, our GWMAC method learns the significance

of different modalities, which is robust to those noise and useless

modalities. We demonstrate the feasibility and the superiority of

our method on several representative datasets. Experimental results

show that our GWMAC performs the best or beyond average in

well-aligned setting, and significantly outperforms state-of-the-art

methods in both partially-aligned and totally-unaligned settings.

2 RELATEDWORK
2.1 Multi-modal clustering
Most existing multi-modal clustering methods depend on either

the co-regularization strategy or the kernel fusion strategy. For the

co-regularization strategy, the canonical correlation analysis (CCA)

has been widely used. CCA maps different modalities to the same

latent space and maximizes the correlation of their latent codes ac-

cordingly [50]. The early CCA-based methods apply linear mapping

functions [5]. With the development of deep learning, the mapping

functions can be parameterized via deep neural networks (i.e., en-

coders) [58, 74, 81]. Besides maximizing the correlation, other regu-

larizers can be applied when learning the encoders, e.g., considering

the reconstruction errors of different modules in an auto-encoding

framework [41, 73] and introducing adversarial regularizers for the

latent codes [28, 57]. Besides the above CCA-based methods, some

other methods impose structural constraints on the latent codes

of different modalities, e.g., orthogonal constraint [68], low-rank

structure [11, 16, 79], non-negativeness constraint [30, 53].

The kernel fusion strategy is commonly applied to the multi-

modal data with significant structural information. For example,

in many applications, the samples of each modality may own a

graph structure [20, 54], and thus, the relation or the similarity be-

tween arbitrary two samples can be represented via various kernel

matrices [18, 34, 49]. The valid kernel matrix, which is derived

by fusing the kernel matrices of different modalities, indicates

their shared clustering structure. Accordingly, the multi-modal

clustering is achieved via applying spectral clustering [18, 25, 80]

or k-means [12, 17, 31] to the fused kernel matrix. In general, the

kernel matrices are fused in an additive way, where the kernels and

their weights can be fixed [10] or learnable [55]. The work in [55]

first partitions each view by kernel 𝑘-means, then maximizes the

alignment between the weighted partitions so as to reduce the com-

putation complexity. Recently, the relations among the samples can

be adjusted or optimized during training as well, which leads to the

combination of the kernel fusion methods with other graph-based

learning frameworks [27, 40, 54, 77]. Note that the kernel fusion

strategy does not map different modalities to the same latent space

explicitly. Such flexibility motivates us to implement our GWMAC

method based on kernels.

2.2 Multi-modal alignment
These above multi-modal clustering methods require that the sam-

ples of different modalities are well-aligned, i.e., the correspondence

between the samples is known. To relax this strict constraint, some

attempts have been made to achieve multi-modal clustering in more

challenging scenarios. For example, methods in [13, 59, 60, 63, 69]

achieve multi-modal clustering based on incomplete multi-modal

data (i.e., for some multi-modal samples, a part of their modalities

are unobserved). Besides the incompleteness, the unbalance issue

(i.e., some modalities own few samples while the others have lots of

observations) [14] and the inconsistency issue (i.e., the modalities

contains complementary even inconsistent information) [7] are

also considered. These issues can be viewed as the special cases of

the incomplete problem. As a result, we can also deal with these

issues by aligning the samples of different modalities, but it requires

us to consider the significance of the modalities at the same time.
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Essentially, these above methods aim at estimating the corre-

spondence of the samples across different modalities, which leads to

the multi-modal alignment problem. However, most existing multi-

modal alignment methods require at least a part of well-aligned

data [22, 24, 29]. Although some recent work has made efforts to

align the totally-unaligned multi-modal data [4, 66, 70], their perfor-

mance suffers from the identifiability issue because the alignment

problem itself is NP-hard. As a result, their alignment results are

normally inconsistent when the number of modalities is larger than

two and are sensitive to the noise of data.

2.3 Optimal transport-based machine learning
Recently, the optimal transport theory [51] shows the potentials to

various machine learning tasks, such as distribution matching [2],

generative modeling [1, 48], shape comparison [35], graph analy-

sis [6], and so on. Some recent work demonstrates that the well-

known Wasserstein distance [23] and its Gromovized variants (i.e.,

the Gromov-Wasserstein distance) [35] can be used to achieve data

alignment and clustering [8, 66]. The optimal transport plan asso-

ciated with these distances helps to estimate the correspondence

between samples (or between the samples and the clusters). Re-

cently, for the structured data like point clouds and graphs, the

Gromov-Wasserstein distance [46] has been proven useful for the

alignment problems, such as graph matching [47] and point cloud

registration [42]. More recently, its capability of clustering is ex-

plored by the work in [33, 65] and is demonstrated in [6]. The

proposed GWMAC method extends the GW spectral method in [6]

to multi-modal scenarios.

3 PROPOSED METHOD
Suppose that we observe some data of 𝑀 modalities, i.e., {𝑿𝑚 ∈
R𝑁𝑚×𝐷𝑚 }𝑀

𝑚=1
and each 𝑿𝑚 = {𝒙𝑚,𝑖 ∈ R𝐷𝑚 }𝑁𝑚

𝑖=1
contains 𝑁𝑚 𝐷𝑚-

dimensional samples and corresponds to a specific modality. Differ-

ent from the typical scenarios considered by most existing methods,

the multi-modal data are unaligned, i.e., the correspondence be-

tween arbitrary two samples of different modalities is unknown,

and generally, 𝑁𝑚 ≠ 𝑁𝑚′ for𝑚 ≠𝑚′. Given such unaligned multi-

modal data, we aim to align the samples across different modalities

and explore the clustering structure shared by the modalities.

Obviously, the alignment and the clustering of the multi-modal

data are highly correlated so that each problem has impact on the

other one. In this study, we model these two problems jointly in a

kernel fusion framework and show that this learning task can be

solved efficiently with the help of optimal transport techniques.

3.1 A joint alignment-clustering framework
Typically, when the multi-modal data are well aligned, i.e., 𝑿 =

[𝑿1, ...,𝑿𝑀 ] ∈ R𝑁×(𝐷1+...+𝐷𝑀 )
, most existing kernel fusion-based

clustering methods [25, 49, 54, 80] can be formulated as follows:

max𝑮∈Ω,𝜽 tr(𝑮𝑇 𝑲̄ (𝑿 ;𝜽 )𝑮)

𝑠 .𝑡 . 𝑲̄ (𝑿 ;𝜽 ) =
∑︁𝑀

𝑚=1

𝛼𝑚𝑲𝑚 (𝑿𝑚 ;𝜽𝑚),
(1)

where tr(·) represents the trace of matrix. 𝑲̄ (𝑿 ;𝜽 ) ∈ R𝑁×𝑁 is the

fused kernel matrix parameterized by the model parameter 𝜽 . It

is constructed as the sum of the weighted kernel matrices of dif-

ferent modalities, i.e., {𝑲𝑚 (𝑿𝑚 ;𝜽𝒎)}𝑀𝑚=1
,
1
and the weight vector

𝜶 = [𝛼𝑚] is in the (𝑀 − 1)-simplex, i.e., 𝜶 ∈ Δ𝑀−1
. The weight

𝛼𝑚 can be interpreted as the significance of the𝑚-th modality. Ac-

cordingly, the model parameters 𝜽 = {𝜽1, ..., 𝜽𝑀 ,𝜶 } include the

parameters for each modality-specific kernel and the weights of the

modalities. 𝑮 ∈ Ω is an indicatormatrix that indicates the clustering

structure. When the feasible domain Ω = {𝑮 ∈ R𝑁×𝑑 |𝑮𝑇 𝑮 = 𝑰𝑑 },
the objective function in (1) corresponds to the spectral clustering.

The objective function in (1) becomes kernel K-means [12, 17, 31]

when Ω = {𝑮 ∈ {0, 1}𝑁×𝑑 |𝑮1𝑑 = 1𝑁 }, where 𝑑 is the desired

number of clusters.

In our task, however, the multi-modal data are unaligned. There-

fore, we need to consider the alignment of the data before fusing

their kernel matrices. A naïve solution to this problem is first align-

ing the kernel matrices pairwisely and then applying the kernel

fusion-based clustering. In particular, given two kernel matrices

𝑲𝑚 ∈ R𝑁𝑚×𝑁𝑚
and 𝑲𝑚′ ∈ R𝑁𝑚′×𝑁𝑚′ , where 𝑁𝑚 ≥ 𝑁𝑚′ , their

alignment corresponds to solving the following quadratic assign-

ment programming (QAP) problem:

𝑻𝑚,𝑚′ = arg max𝑻 ∈𝑃 (1𝑁𝑚 ,1𝑁𝑚′ )
trace(𝑲𝑇

𝑚′𝑻
𝑇𝑲𝑚𝑻 ), (2)

where 𝑻𝑚,𝑚′ is the optimal alignment matrix that matches 𝑲𝑚 with

𝑲𝑚′ . 𝑃 (1𝑁𝑚
, 1𝑁𝑚′ ) = {𝑻 ∈ {0, 1}

𝑁𝑚×𝑁𝑚′ |𝑻1𝑁𝑚′ ≤ 1𝑁𝑚
, 𝑻𝑇 1𝑁𝑚

=

1𝑁𝑚′ } is the set of valid permutation matrices.

Given 𝑀 modalities’ samples {𝑿𝑚 ∈ R𝑁𝑚×𝐷𝑚 }𝑀
𝑚=1

, without

loss of generality, we assume that 𝑁1 ≥ ... ≥ 𝑁𝑀 and solve𝑀 − 1

QAP problems — taking 𝑲1 (𝑿1) as the reference and aligning other
kernel matrices to it. Then, the problem in (1) becomes

max𝑮∈Ω,𝜽 tr(𝑮𝑇 𝑲̄ (𝑿 ;𝜽 )𝑮)

𝑠 .𝑡 . 𝑲̄ (𝑿 ;𝜽 ) =
∑︁𝑀

𝑚=1

𝛼𝑚𝑻1,𝑚𝑲𝑚 (𝑿𝑚 ;𝜽𝑚)𝑻𝑇1,𝑚,
(3)

where 𝑻1,1 = 𝑰𝑁1
and other 𝑻1,𝑚 ’s (𝑚 ≠ 1) are derived by solving

the QAP problems.

Such an “alignment-then-clustering” strategy is challenging in

practice. When the numbers of samples (the𝑁𝑚 ’s) are large, solving

the QAP problems is time-consuming because of their NP-hardness.

The solutions often suffer from the identifiability issue and are

sensitive to the noise of data. As a result, the sub-optimal align-

ment may lead to catastrophic error propagation, and thus poor

clustering performance. To overcome these challenges, we propose

the following joint alignment-clustering framework in a bi-level

optimization manner:

max𝑮∈Ω,𝜽 tr(𝑮𝑇 𝑲̄𝑮)︸                       ︷︷                       ︸
Fused kernel clustering

𝑠 .𝑡 . 𝑲̄ = arg max𝑻𝑚 ∈Π𝑚,𝑲

∑︁
𝑚
𝛼𝑚tr(𝑲𝑇

𝑚 (𝑿𝑚 ;𝜽𝑚)𝑻𝑇𝑚𝑲𝑻𝑚) .︸                                                                 ︷︷                                                                 ︸
Multi-kernel alignment and fusion

(4)

Here, the upper-level problem corresponds to the clustering prob-

lem based on the fused kernel. The lower-level problem aligns the

kernel matrices jointly, which optimizes the alignment matrices

{𝑻𝑚}𝑇𝑚=1
and outputs the corresponding fused kernel 𝑲̄ .

1
In the following content, we may represent the kernel matrix as 𝑲𝑚 for convenience.
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The main differences between our joint alignment-clustering

framework and the “alignment-then-clustering” strategy include

three points: 𝑖) The variables of the upper-level problem, i.e., 𝜽 ,
are involved in the lower-level problem. As a result, we need to

solve these two problems iteratively. 𝑖𝑖) We do not set a reference

modality, so that the fused kernel 𝑲̄ and the alignment matrices are

learned jointly, and the size of the fused kernel can be set with high

flexibility. 𝑖𝑖𝑖) Denote the feasible domain of each 𝑻𝑚 as Π𝑚 . Instead

of setting Π𝑚 as a set of strict permutation matrices, we consider

relaxing it to a set of doubly-stochastic matrices and thus avoid

to solve QAP problems. In the following content, we will show

that this joint alignment-clustering framework can be implemented

efficiently based on the Gromov-Wasserstein distance.

3.2 Fusing kernels as calculating a weighted
Gromov-Wasserstein barycenter

Gromov-Wasserstein distance is proposed in [37, 46], which is a nat-

ural extension of classic optimal transport theory [51] and provides

a valid metric for metric-measure spaces (mm-spaces).

Definition 3.1. Let X𝑑𝑥 ,𝑝𝑥 and Y𝑑𝑦 ,𝑝𝑦 be two metric measure
spaces, where 𝑑𝑥 is the metric defined in the spaceX, and 𝑝𝑥 is a prob-
ability measure defined on X (with Y𝑑𝑦 ,𝑝𝑦 defined in the same way).
The Gromov-Wasserstein distance 𝐷gw (X𝑑𝑥 ,𝑝𝑥 ,Y𝑑𝑦 ,𝑝𝑦 ) is defined as
𝑑gw (X𝑑𝑥 ,𝑝𝑥 ,Y𝑑𝑦 ,𝑝𝑦 ) := inf

𝜋 ∈Π (𝑝𝑥 ,𝑝𝑦 )
E(𝑥,𝑦,𝑥 ′,𝑦′)∼𝜋×𝜋 [𝑟𝑥,𝑦,𝑥 ′,𝑦′]

= inf

𝜋 ∈Π (𝑝𝑥 ,𝑝𝑦 )

∫
X2×Y2

𝑟𝑥,𝑦,𝑥 ′,𝑦′𝜋 (𝑥,𝑦)𝜋 (𝑥 ′, 𝑦′)d𝑥d𝑦d𝑥 ′d𝑦′,
(5)

where 𝑟𝑥,𝑦,𝑥 ′,𝑦′ = |𝑑𝑥 (𝑥, 𝑥 ′) − 𝑑𝑦 (𝑦,𝑦′) |2 is relational distance that
measures the discrepancy between the sample pairs, and Π(𝑝𝑥 , 𝑝𝑦) =
{𝜋 (𝑥,𝑦) ≥ 0|

∫
Y 𝜋 (𝑥,𝑦)d𝑦 = 𝑝𝑥 ,

∫
X 𝜋 (𝑥,𝑦)d𝑥 = 𝑝𝑦} is the set of all

probability measures on X ×Y with 𝑝𝑥 and 𝑝𝑦 as marginals.

According to the above definition, the GW distance corresponds

to the minimum expectation of the relational loss. The optimal

joint distribution 𝜋∗ corresponding to the GW distance is called

the optimal transport plan (or coupling) between 𝑝𝑥 and 𝑝𝑦 .

Given the samples of the two mm-spaces, e.g., 𝑿 = {𝒙𝑖 }𝐼𝑖=1
⊂ X

and 𝒀 = {𝒚 𝑗 }𝐽𝑗=1
⊂ Y, whose empirical sample distributions are

uniform (i.e., 𝒑̂𝑥 = 1

𝐼
1𝐼 and 𝒑̂𝑦 = 1

𝐽
1𝐽 ), the empirical Gromov-

Wasserstein distance between the samples can be defined as

ˆ𝑑gw (𝑪𝑋 , 𝑪𝑌 )

:= min𝑻 ∈Π (𝒑̂𝑥 ,𝒑̂𝑦 )
∑︁𝐼

𝑖,𝑖′=1

∑︁𝐽

𝑗, 𝑗 ′=1

|𝑐𝑋𝑖𝑖′ − 𝑐
𝑌
𝑗 𝑗 ′) |

2𝑇𝑖 𝑗𝑇𝑖′ 𝑗 ′

= min𝑻 ∈Π (𝒑̂𝑥 ,𝒑̂𝑦 ) tr((𝑪𝑋 ⊙ 𝑪𝑋 )𝒑̂𝑥1𝑇𝐽 𝑻
𝑇 )+

tr(𝑻𝑇 1𝐼 𝒑̂𝑇𝑦 (𝑪𝑌 ⊙ 𝑪𝑌 )𝑇 ) − 2tr(𝑪𝑇𝑌 𝑻
𝑇 𝑪𝑋𝑻 )

⇔ max𝑻 ∈Π (𝒑̂𝑥 ,𝒑̂𝑦 ) tr(𝑪
𝑇
𝑌 𝑻

𝑇 𝑪𝑋𝑻 ),

(6)

where ⊙ represents the Hadamard product. 𝑪𝑋 = [𝑐𝑋
𝑖𝑖′] ∈ R

𝐼×𝐼

and 𝑪𝑌 = [𝑐𝑌
𝑗 𝑗 ′] ∈ R

𝐽 ×𝐽
are two relation matrices constructed by

the samples, and each element 𝑐𝑋
𝑖𝑖′ indicates the relation between

𝒙𝑖 and 𝒙𝑖′ quantitatively (and 𝑐𝑌
𝑗 𝑗 ′ works in the same way). For

the samples, 𝑪𝑋 and 𝑪𝑌 can be their distance matrices [35, 66],

kernel matrices [36], or adjacency matrices [47, 65] (if the graph

structures of the samples are available). The matrix 𝑻 is restricted to

be a doubly-stochastic matrix, i.e., 𝑻 ∈ Π(𝒑̂𝑥 , 𝒑̂𝑦) and Π(𝒑̂𝑥 , 𝒑̂𝑦) =
{𝑻 ≥ 0|𝑻1𝐽 = 𝒑̂𝑥 , 𝑻𝑇 1𝐼 = 𝒑̂𝑦}. The optimal solution, denoted as

𝑻 ∗, is called optimal transport matrix, which can be viewed as a

joint distribution of the samples (i.e., 𝑿 × 𝒀 ).
As shown in third row of (6), the optimization problem of the

GW distance can be rewritten in a matrix format [42, 64]. Moreover,

the first two terms are constant because 𝑻1𝐽 = 𝒑̂𝑥 and 𝑻𝑇 1𝐼 = 𝒑̂𝑦 .

As a result, when computing
ˆ𝑑gw, the objective function is the

same with the QAP problem. However, the variable 𝑻 is relaxed

from a permutation matrix to a doubly-stochastic matrix, which

simplifies the problem significantly and enriches our choice on

optimization algorithms. Such a relaxation does not undermine the

power of the GW distance on data alignment — the 𝑻 ∗ indicates the
joint distribution of the samples, and accordingly, its element 𝑇𝑖 𝑗
represents the coherency probability of 𝒙𝑖 and 𝒚 𝑗 . In other words,

𝑻 ∗ achieves a “soft” assignment of the samples, matching𝒚 𝑗 with 𝒙𝑖
with a probability 𝑇𝑖 𝑗 . The larger 𝑇𝑖 𝑗 is, the more deterministic the

matching result is. Due to its capability of data alignment, the GW

distance has been applied in various matching tasks successfully,

e.g., graph matching [65], shape matching [35], and so on.

When multiple sample sets are available, e.g., the unaligned

multi-modal data in our study, we can achieve their joint align-

ment based on the GW distance as well. In particular, given the𝑀

kernel matrices {𝑲𝑚}𝑀𝑚=1
, we can derive their weighted Gromov-

Wasserstein barycenter [42] as follows:

𝑲̄ = arg min𝑲

∑︁𝑀

𝑚=1

𝛼𝑚 ˆ𝑑𝑔𝑤 (𝑲 ,𝑲𝑚),

⇔ arg max{𝑻𝑚 ∈Π (𝒑,𝒑̂𝑚) }𝑀𝑚=1
,𝑲

∑︁𝑀

𝑚=1

𝛼𝑚
(
2tr(𝑲𝑇

𝑚𝑻𝑇𝑚𝑲𝑻𝑚)

− 𝒑̄𝑇 (𝑲 ⊙ 𝑲 )𝒑̄
)
,

(7)

where 𝜶 = [𝛼𝑚] ∈ Δ𝑀−1
, ⊙ represent the Hadamard product.

According to the definition in (7), the matrix 𝑲̄ ∈ R𝐿×𝐿 is the

weighted GW barycenter of the observed 𝑲𝑚 ’s if only the sum

of the weighted distances to 𝑲𝑚 ’s is minimized. Note that, two

hyperparameters should be predefined manually: 𝑖) the size of the

barycenter (i.e., 𝐿); and 𝑖𝑖) the empirical distribution associated with

the barycenter (i.e., 𝒑̄ ∈ Δ𝐿−1
), before we can calculate the GW

barycenter. In the following content, we will show that 𝐿 can be

much smaller than the number of samples, and we can set 𝒑̄ to be

a uniform distribution just as the way [42, 64] have done.

Replacing the GW distance with its equivalent optimization

problem, we can reformulate the GW barycenter as shown in the

second row of (7). It is easy to find that the weighted GW barycenter

problem is coincident to the multi-kernel alignment and fusion

problem in (4). For each observed kernel, the optimal transport

matrix helps to align it to the barycenter. In particular, denote L as

the objective function in (7), and suppose that the optimal transport

matrices {𝑻 ∗𝑚}𝑀𝑚=1
are available. Based on the first-order optimality

condition, the barycenter is derived as the weighted sum of the

kernel matrices aligned by the optimal transport matrices:

𝜕L
𝜕𝑲̄

= 0 ⇒ 𝑲̄ =
1

𝒑̄𝒑̄𝑇

∑︁𝑀

𝑚=1

𝛼𝑚𝑻 ∗𝑚𝑲𝑚 (𝑻 ∗𝑚)𝑇 . (8)

Therefore, the weighted GW barycenter problem is the lower-level

problem of the joint alignment-clustering framework in (4).
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3.3 Gromov-Wasserstein clustering
For the upper-level clustering problem in (4), we now revisit it

from the viewpoint of Gromov-Wasserstein distance. In particular,

according to (6), we have the following proposition:

Proposition 3.2. For the clustering problem max𝑮∈Ω tr(𝑮𝑇 𝑲̄𝑮),
if the indicator 𝑮 is a doubly-stochastic matrix, i.e., Ω = Π(𝒑̄, 1

𝑑
1𝑑 ) =

{𝑮 ≥ 0|𝑮1𝑑 = 𝒑̄, 𝑮𝑇 1𝐿 = 1

𝑑
1𝑑 }, then we can get that

max𝑮∈Ω tr(𝑮𝑇 𝑲̄𝑮) ⇔ max𝑮∈Ω tr(𝑮𝑇 𝑲̄𝑮𝑰𝑑 ) ⇔ ˆ𝑑gw (𝑲̄ , 𝑰𝑑 ) . (9)

This equivalence is firstly applied in [65], which helps to achieve

encouraging performance on clustering tasks like graph partition-

ing. Proposition 3.2 indicates that we can solve the clustering prob-

lem driven by the modularity maximization principle by means of

the GW distance. Recently, the work in [6] demonstrates in the-

ory that computing
ˆ𝑑gw (𝑲 , 𝑰𝑑 ) can be regarded as a solution of

the generalized spectral clustering given the kernel matrix 𝑲 . Es-

pecially, when the kernel is a heat kernel and the clusters have

comparable size, computing
ˆ𝑑gw (𝑲 , 𝑰𝑑 ) with 𝑑 = 2 has achieved

the well-known Fiedler partitioning. The clustering problem can be

further simplified with higher flexibility and efficiency when the

kernel is the GW barycenter of multiple kernels.

3.3.1 Reduce the problem size for efficiency. Plugging the 𝐾

in (8) into the upper-level clustering problem in (4), we have

max𝑮∈Π (𝒑, 1

𝑑
1𝑑 ) tr(𝑮

𝑇 𝑲̄𝑮)︸                              ︷︷                              ︸
Multi-modal clustering

=max𝑮∈Π (𝒑, 1

𝑑
1𝑑 )

1

𝒑̄𝒑̄𝑇

∑︁𝑀

𝑚=1

𝛼𝑚tr(𝑮𝑇 𝑻 ∗𝑚𝑲𝑚 (𝑻 ∗𝑚)𝑇 𝑮︸   ︷︷   ︸
𝑮𝑚

)

≤ max{𝑮𝑚 ∈Π (𝒑𝑚, 1

𝑑
1𝑑 ) }𝑀𝑚=1

1

𝒑̄𝒑̄𝑇

∑︁𝑀

𝑚=1

𝛼𝑚tr(𝑮𝑇
𝑚𝑲𝑚𝑮𝑚)︸                                                                      ︷︷                                                                      ︸

Clustering each modality independently

.

(10)

Here, clustering eachmodality independentlymeans learningmodality-

specific indicators, denoted as {𝑮𝑚}𝑀𝑚=1
, without consideringwhether

these indicators own the same clustering structure or not. The clus-

tering achieved by the fused kernel actually imposes a common

clustering structure on these indicators, i.e., 𝑮𝑚 = (𝑻 ∗𝑚)𝑇 𝑮 for

𝑚 = 1, ..., 𝑀 .
2
In other words, each modality-specific indicator is

factorized into two components: the modality-specific alignment

matrix 𝑻 ∗𝑚 and a shared clustering indicator 𝑮 . Imposing this struc-

tural constraint makes the multi-modal clustering works as a lower

bound of independent single modality clustering.

This factorization model 𝑮𝑚 = (𝑻 ∗𝑚)𝑇 𝑮 provides important evi-

dence for determining the size of the GW barycenter 𝑲̄ . The rank

of 𝑮𝑚 is at most 𝑑 (i.e., the number of clusters), so it is sufficient to

set the size of the GW barycenter 𝐿 to be 𝑑 , which avoids introduc-

ing redundant structural information. As a result, the upper-level

clustering problem in (4) can be transformed into a small-scale GW

distance problem, where both 𝑮 and 𝑲̄ are with size (𝑑 × 𝑑).

2
Note that, each modality-specific indicator 𝑮𝑚 = (𝑻 ∗𝑚)𝑇𝑮 because both 𝑻 ∗𝑚 and 𝑮
are doubly-stochastic matrices, each modality-specific indicator 𝑮𝑚 = (𝑻 ∗𝑚)𝑇𝑮 is a

doubly-stochastic matrix as well, whose feasible domain is Π (𝒑𝑚, 1

𝑑
1𝑑 ) .

3.3.2 Design the clustering loss with high flexibility. As
shown in Proposition 3.2, the clustering problem is equivalent to

computing
ˆ𝑑gw (𝑲̄ , 𝑰𝑑 ). Furthermore, when the 𝑲̄ is a GW barycen-

ter, other loss functions are also applicable because both the GW dis-

tance and the GW barycenter own a useful property — permutation-

invariance [64]. In particular, given a matrix 𝑲 and its permutation

𝑷𝑲̄𝑷𝑇 , its GW distance to an arbitrary matrix 𝑲 ′ satisfies:

ˆ𝑑gw (𝑲 ,𝑲 ′) = ˆ𝑑gw (𝑷𝑲̄𝑷𝑇 ,𝑲 ′), (11)

where 𝑷 ∈ P is a random permutation matrix. For the GW barycen-

ter problem (7), if 𝑲̄ is its optimal solution, then its permutation

𝑷𝑲̄𝑷𝑇 will become another optimal solution. As a result, due to the

permutation-invariantmerit of the GWbarycenter 𝑲̄ , the permutation-

invariance in the clustering loss becomes nonobligatory. Thus, be-

sides
ˆ𝑑gw (𝑲̄ , 𝑰𝑑 ), other loss functions like mean-square error (MSE)

and cross-entropy loss are applicable.

In summary, plugging the GW barycenter problem in (7) into

the joint alignment-clustering framework in (4), we obtain the pro-

posed Gromov-Wasserstein multi-modal alignment and clustering

(GWMAC) model as follows:

min𝜽 loss(𝑲̄ (𝜽 ), 𝑰𝑑 )) − 𝛾𝐻 (𝜶 )

𝑠 .𝑡 . 𝑲̄ (𝜽 ) = arg min𝑲

∑︁𝑀

𝑚=1

𝛼𝑚 ˆ𝑑gw (𝑲 ,𝑲𝑚 (𝑿𝑚 ;𝜽𝑚)),
(12)

where the size of the barycenter 𝑲̄ is 𝑑 × 𝑑 , and 𝒑̄ = 1

𝑑
1𝑑 . For the

loss function loss(𝑲̄ (𝜽 ), 𝑰𝑑 )), we consider three options:
• The GW-based loss: min𝑮∈Π (𝒑, 1

𝑑
1𝑑 ) −tr(𝑮

𝑇 𝑲̄ (𝜽 )𝑮).
• The Mean-Squared Error (MSE): ∥𝑲̄ (𝜽 ) − 𝑰𝑑 ∥2𝐹 .
• The cross-entropy (CE) loss:When 0 ≤ 𝑲̄ (𝜽 ) ≤ 1, we can
apply tr(log 𝑲̄ (𝜽 )) + tr((1 − 𝑰𝑑 ) log(1 − 𝑲̄ (𝜽 ))).

Additionally, we introduce 𝐻 (𝜶 ) = −⟨𝜶 , log𝜶 ⟩ as the entropy of

the modalities’ weights, which would avoid learning the clustering

structure just from a single modality. The significance of this term

is controlled by the hyperparameter 𝛾 and 𝛾 ≥ 0.

For each kernel matrix𝑲𝑚 (𝑿𝑚 ;𝜽𝑚), we construct it based on the
latent codes obtained by the encoder. Given arbitrary two samples,

i.e., 𝒙𝑚
𝑖
, 𝒙𝑚

𝑗
∈ 𝑿𝑚 , the corresponding element of 𝑲𝑚 (𝑿𝑚 ;𝜽𝑚), i.e.,

𝐾𝑚
𝑖 𝑗
, is modeled as

𝐾𝑚
𝑖 𝑗 = 𝐾𝜎 (𝑓𝜽𝑚 (𝒙

𝑚
𝑖 ), 𝑓𝜽𝑚 (𝒙

𝑚
𝑗 )), 𝑚 = 1, ..., 𝑀. (13)

where 𝑓𝜽𝑚 represents the encoder of the𝑚-th modality and param-

eterized by 𝜽𝑚 , and 𝐾𝜎 (·, ·) is a predefined kernel function whose

bandwidth is 𝜎 . In this work, we implement each encoder as a

multi-layer perceptron (MLP) model and the kernel function as the

radial basis function (RGB) kernel.

4 LEARNING ALGORITHM
4.1 Alternating optimization
To achieve a trade-off between performance and efficiency, we pro-

pose an alternating optimization strategy for (12), first calculating

the GW barycenter and the associated optimal transport matrices,

and then updating the model parameters via stochastic gradient

descent (SGD). Specifically, our algorithm involves the following

two steps at the 𝑡-th iteration.
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Algorithm 1 Conditional gradient algorithm for
ˆ𝑑gw (𝑲̄ ,𝑲 )

1: Input: 𝑲̄ ∈ R𝑑×𝑑 , 𝑲 ∈ R𝑁×𝑁 , 𝒑̄ ∈ Δ𝑑−1
, and 𝒑 ∈ Δ𝑁−1

.

2: Initialize 𝑻 = 𝒑̄𝒑𝑇 .
3: while not converge do
4: (𝑖) Apply the network flow algorithm:
5: 𝑻̃ = arg max𝑻 ∈Π (𝒑,𝒑) tr(𝑲𝑇 𝑻𝑇 𝑲̄𝑻 ).
6: (𝑖𝑖) Apply the line search method:
7: 𝑎 = −2tr(𝑲𝑇 𝑻̃𝑇 𝑲̄𝑻̃ ), 𝑏 = tr((𝑲̄ ⊙ 𝑲̄ )𝒑̄𝒑𝑇 + 𝒑̄𝒑𝑇 (𝑲 ⊙ 𝑲 )𝑇 )
8: 𝑐 = −2(tr(𝑲𝑇 𝑻𝑇 𝑲̄𝑻̃ ) + tr(𝑲𝑇 𝑻̃𝑇 𝑲̄𝑻 )).
9: if 𝑎 > 0 then
10: 𝜏 = min(1,max(0, −(𝑏+𝑐)

2𝑎 ))
11: else
12: 𝜏 = 1 if 𝑎 + 𝑏 + 𝑐 < 0 else 𝜏 = 0

13: end if
14: (𝑖𝑖𝑖) Update OT matrix: 𝑻 ← (1 − 𝜏)𝑻 + 𝜏𝑻̃
15: end while
16: Output: 𝑻 ∗ := 𝑻 .

4.1.1 UpdateGWbarycenters. Given currentmodel parameters,

we first solve the lower-level problem in (12) to calculate the GW

barycenter based on the kernel matrices.

min𝑲

∑︁𝑀

𝑚=1

𝛼
(𝑡 )
𝑚

ˆ𝑑gw (𝑲 ,𝑲𝑚 (𝑿𝑚 ;𝜽 (𝑡 )𝑚 )) . (14)

Solving this problem involves an inner iteration with 𝐿 steps. Given

the current barycenter 𝑲̄ (ℓ) at the ℓ-th inner step, we first compute

GW distances𝑀 times, i.e.,
ˆ𝑑gw (𝑲̄ (ℓ) ,𝑲𝑚 (𝑿𝑚 ;𝜽 (𝑡 )𝑚 ), to obtain the

optimal transport matrices {𝑻 ∗𝑚}𝑀𝑚=1
. Then, we update the barycen-

ter via (8) with the optimal transport matrices.

Although the GW distance corresponds to a nonconvex non-

smooth optimization problem, many algorithms can be applied to

solve it efficiently, e.g., the proximal gradient algorithm [42, 67],

the Bregman ADMM algorithm [52, 64], and so on. In this work,

we apply the conditional gradient algorithm proposed in [47] to

pursue sparse optimal transport matrices. The specific scheme to

calculate the GW distance is summarized in Algorithm 1.

4.1.2 Update model parameters. Plugging the 𝑲̄ calculated in

the first step into the upper-level problem in (12), we have

min

𝜽𝑚,𝜶 ∈Δ𝑀−1

loss

(
1

𝒑̄𝒑̄𝑇

𝑀∑︁
𝑚=1

𝛼𝑚𝑻 ∗𝑚𝑲𝑚 (𝜽𝑚) (𝑻 ∗𝑚)𝑇 , 𝑰𝑑
)
− 𝛾𝐻 (𝜶 ) . (15)

We can update {𝜽𝑚}𝑀𝑚=1
efficiently by the SGD algorithm, where

the gradient is calculated via the backpropagation. Meanwhile, we

need to ensure that the updated values of 𝜶 are in (𝑀 − 1)-Simplex.

To achieve this, we project the 𝜶̃ obtained by the SGD back to the

(𝑀 − 1)-Simplex by optimizing min𝜶 ∈Δ𝑀−1 ∥𝜶 − 𝜶̃ ∥2
2
.

Details of our GWMAC method are shown in Algorithm 2. The

output of GWMAC method involves three parts: (𝑖) The optimal

transport matrices {𝑻𝑚 ∈ Π( 1

𝑑
1𝑑 , 1

𝑁𝑚
1𝑁𝑚
)}𝑀
𝑚=1

that provide us

with the joint distribution of the samplers per modality and the clus-

tering result we are interested in. Specifically, the 𝑛-th sample of the

𝑚-th modality is in the 𝑖∗-th cluster if 𝑖∗ = arg max𝑖∈{1,..,𝑑 }𝑇
∗
𝑛𝑖,𝑚

given 𝑻 ∗𝑚 = [𝑇 ∗
𝑛𝑖,𝑚
]. (𝑖𝑖) The vector 𝜶 that indicates the significance

of different modalities, helps us to find the useful modalities for our

Algorithm 2 Algorithm for GWMAC

1: Input:Multi-modal data and their sample distributions {𝑿𝑚 ∈
R𝑁𝑚×𝐷𝑚 ,𝒑𝑚 = 1

𝑁𝑚
1𝑁𝑚
}𝑀
𝑚=1

, the predefined number of clus-

ters 𝑑 , and 𝒑̄ = 1

𝑑
1𝑑 .

2: while not converged do
3: Compute {𝑲𝑚 (𝑩𝑚 ;𝜽𝑚)}𝑀𝑚=1

for a batch {𝑩𝑚 ⊂ 𝑿𝑚}𝑀𝑚=1
.

4: (𝑖) Solve the GW barycenter problem:
5: Initialize 𝑲̄ = 𝑰𝑑
6: for ℓ = 1, ..., 𝐿 do
7: for𝑚 = 1, ..., 𝑀 do
8: Compute

ˆ𝑑gw (𝑲̄ ,𝑲𝑚) via Algorithm 1 and obtain 𝑻 ∗𝑚 .

9: end for
10: Update 𝑲̄ by (8).

11: end for
12: (𝑖𝑖) Update model parameters:
13: Solve (15) via SGD and obtain {𝜽𝑚}𝑀𝑚=1

and 𝜶̃ .

14: Update 𝜶 = arg min𝜶 ∥𝜶 − 𝜶̃ ∥2
2
.

15: end while
16: Output: {𝑻 ∗𝑚}𝑀𝑚=1

, 𝜶 , and the encoders {𝑓𝜽𝑚 }𝑀𝑚=1
.

Table 1: Summary of the multi-modal datasets

Datasets Size Views Dimensions Class

HandWritten 2000 6 [76, 216, 64, 240, 47, 6] 10

Caltech 7 1474 6 [48, 40, 254, 1984, 512, 928] 7

Movies 617 2 [1878, 1398] 17

ORL 400 2 [288, 288] 40

Prokaryotic 551 3 [438, 3, 393] 4

clustering task, and at the same time, suppresses the negative influ-

ences of the useless modalities. (𝑖𝑖𝑖) The encoders 𝑓𝜽𝑚 that make

our model inductive. As a result, we can leverage the encoders

to represent new-coming data and achieve other downstream ap-

plications like multi-modal classification, besides clustering the

observed multi-modal data.

Denote the number of samples per batch as 𝐵, and the expected

number of the clusters as 𝑑 , then the computational complexity of

our GWMAC method is O(𝐿𝑀𝐵2𝑑), which is mainly contributed

by computing the GW distances𝑀 times in 𝐿 inner GW barycenter

iterations. Fortunately, we often have 𝐿,𝑀,𝑑, 𝐵 ≪ 𝑁 in practice

where 𝑁 is the total number of samples. Moreover, the computation

of the GW distance can be accelerated by various methods, e.g.,

applying the “divide-and-conquer” strategy in [65], or imposing

low-rank structures to the kernel matrices and the optimal transport

matrices [45], and so on. As a result, the computational complexity

of our GWMAC method can be further reduced to O(𝐿𝑀𝐵𝑑 log𝐵).
To our knowledge, this complexity is at least comparable to that of

most existing methods and only slightly higher than that of [55].

5 EXPERIMENTS
To demonstrate the feasibility and the effectiveness of our GWMAC

method, we test and analyze it on several representative multi-

modal datasets and compare it with state-of-the-art multi-modal

clustering methods on various learning scenarios.
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Table 2: The performance of different clustering methods. Here, “-” means that a method fails to obtain results in 10 hours.

Data type

Datasets HandWritten Caltech 7 ORL Movies Prokaryotic

Algorithms ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

Well-aligned

(𝛽 = 0)

MCCA 0.8269 0.7775 0.5313 0.4716 0.3475 0.4992 0.0989 0.0722 0.5620 0.1204

DCCAE 0.6537 0.6216 0.4110 0.3850 0.5625 0.7373 0.1572 0.1194 0.5070 0.1827

AttnAE 0.7505 0.6912 0.4600 0.4575 0.4600 0.6603 0.1880 0.1918 0.5390 0.2625

MVKSC 0.6749 0.6376 0.5196 0.2537 0.3013 0.5291 0.2285 0.2098 0.6188 0.3191
MultiNMF 0.8882 0.8279 0.4525 0.5120 0.6900 0.8100 0.1726 0.1856 0.5771 0.2495

50% unaligned

(𝛽 = 0.5)

CPM-GAN 0.7250 0.6069 0.3472 0.3151 0.1987 0.3703 0.1210 0.1753 0.3793 0.3294
MVC-UM - - 0.3958 0.3838 0.5863 0.7586 0.1831 0.1950 0.3950 0.0807

GWMAC 0.8469 0.8156 0.3541 0.5010 0.5322 0.7068 0.1993 0.2195 0.5515 0.3286

100% unaligned

(𝛽 = 1)

MVC-UM - - 0.3112 0.2456 0.5431 0.7452 0.1841 0.1953 0.4451 0.0554

GWMAC 0.8144 0.7546 0.3568 0.4945 0.5118 0.7026 0.1928 0.2138 0.5479 0.3259

5.1 Implementation details
5.1.1 Datasets. In the following experiments, we consider five

commonly-used multi-modal datasets, including HandWritten, Cal-

tech 7, Movies, ORL, and Prokaryotic. The links of the datasets can

be found at our codebase. Each of them contains well-aligned multi-

modal samples and each sample owns a class label. The basic statis-

tics of these multi-modal datasets are summarized in Table 1. To

demonstrate the power of our method, we construct the unaligned

multi-modal data in a controllable way. We set an unalignment

ratio 𝛽 in [0, 1], and we randomly permute the top 𝛽 × 100% per-

centage samples of each modality in each dataset. Obviously, 𝛽 = 0

corresponds to the original well-aligned data, while 𝛽 = 1 leads to a

totally-unaligned multi-modal dataset. Given such datasets, we set

the batch size to be 400 when applying the SGD learning algorithm.

5.1.2 Baselines and evaluationmeasurements. For each dataset,
we apply various multi-modal clustering methods, which can be

categorized into two classes:

1) Five classic multi-modal clusteringmethods: TheMCCA in [9]

fuses the samples in all modalities into one mutual space, and con-

catenates the latent codes accordingly. The Deep Canonical Cor-

relation Auto-Encoders (DCCAE) in [56] learns a auto-encoding

networkwith a CCA-based objective. TheAttnAE applies a𝑀-head

self-attention layer to obtain the latent codes of the multi-modal

data, in which each head encodes one modality and the outputs of

all the heads are further fused by a self-attention layer. The latent

codes are learned to reconstruct the data (through𝑀 decoders). For

these three methods, we apply K-means to the learned latent codes.

TheMultiNMF in [30] is a nonnegative matrix factorization (NMF)

method, which learns the coefficient matrices from all modalities

and regularizes them towards a shared latent clustering structure.

The state-of-the-art kernel fusion clustering strategy, i.e., the multi-

view kernel spectral clustering (MVKSC) method in [21]. All above

multi-modal clustering methods are dependent on the well-aligned

multi-modal data.

2) Two state-of-the-art methods for unaligned multi-modal data:

The CPM-GAN in [72] is a deep learning method for partially-

unaligned multi-modal data modeling, which leverages a gener-

ative adversarial network to generate the unobserved modalities

of each unaligned sample conditioned on the observed modalities.

TheMVC-UM in [70] is the state-of-the-art multi-modal cluster-

ing methods applicable for both partially-unaligned and totally-

unaligned multi-modal data by jointly learning the factorization

models of all the modalities and the correspondence between ar-

bitrary two modalities. Note that, the PVC in [22] is designed for

clustering with two modalities and cannot be easily extended to

multi-modal clustering, so we do not choose it as our baseline.

For our GWMAC method and the above baselines, we apply

the grid search method to find their optimal hyperparameters, e.g.,

the number of epochs, the batch size, the learning rate, and so

on. Additionally, we further study the influences of some key hy-

perparameters on our GWMAC methods in the following experi-

ments, including the number of inner iterations 𝐿 for computing

GW barycenters, the bandwidth 𝜎 of kernel function, the weight 𝛾

of the entropic regularizer, and the choice of various loss functions.

Following the work in [30, 70, 76], we evaluate the above clustering

methods based on their clustering accuracy (ACC) and the normal-

ized mutual information (NMI) on the datasets. For each clustering

method, we run it in five trials under its optimal hyperparameter

setting but with different random seeds. We report the averaged

performance of each method as the final result.
3

5.2 Comparisons and analysis
5.2.1 Clustering performance. We consider the performance of

the multi-modal clustering in three data scenarios: (𝑖) well-aligned

multi-modal data are available; (𝑖𝑖) 50% data are unaligned; (𝑖𝑖𝑖) the

data are totally-unaligned, and we test various methods in their

own applicable scenarios. Table 2 lists the clustering results of all

methods on the five datasets. In each data scenario, we bold the

best results and underline the second best results, respectively. Our

GWMAC method outperforms its main competitors (i.e., MVC-UM

and CPM-GAN) in most situations, and its clustering performance

is even superior or comparable to some baselines trained on the

well-aligned data.

3
For each method, we find that the standard deviation of its clustering ACC in five

trials is less than 0.1. In the following tables, we can find that the gaps between the

averaged performance of different methods are statistically-significant compared to

the standard deviation.
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Figure 2: Visualizations of the learning results achieved on
the HandWritten dataset. Here, we sort the samples in ad-
vance for good visual effects.

A potential reason for this phenomenon is that the optimal trans-

port matrices align the samples across different modalities in a

probabilistic way, which achieves data augmentation to some de-

grees. In contrast, the classic methods can just leverage the deter-

ministic 𝑁 paired samples, i.e., {𝒙𝑚
𝑖
, 𝒙𝑚

′
𝑖
}𝑁
𝑖=1

, given two sample sets

𝑿𝑚 = {𝒙𝑚
𝑖
}𝑁
𝑖=1

and 𝑿𝑚′ = {𝒙𝑚
′

𝑖
}𝑁
𝑖=1

. Meanwhile, our GWMAC

learns 𝑻 ∗𝑚 and 𝑻 ∗
𝑚′ to align 𝑩𝑚 and 𝑩𝑚′ to the clusters without

the correspondence information, given two batches 𝑩𝑚 ⊂ 𝑿𝑚 and

𝑩𝑚′ ⊂ 𝑿𝑚′ . Accordingly, the correspondence between 𝑩𝑚 and 𝑩𝑚′

is estimated by (𝑻 ∗𝑚)𝑇 𝑻 ∗𝑚′ . As a result, the unchanged correspon-

dence is replaced by the probabilistic correspondence that changes

during training to achieve the augmentation of the fused kernels.

For partially-unaligned and totally-unaligned multi-modal data,

our GWMAC often works better than CPM-GAN and MVC-UM, es-

pecially when the datasets are complex (i.e., HandWritten, Caltech

7, and Prokaryotic). On one hand, CPM-GAN requires to learn a gen-

erative model to estimate the missed modalities of those unaligned

data, which often suffers from the over-fitting issue and has a high

risk of model misspecification. On the other hand, MVC-UM learns

pairwise correspondence between arbitrary two modalities, which

can not guarantee the consistency among more than two modalities

(i.e., 𝒙1

𝑖
matches with 𝒙2

𝑗
, 𝒙2

𝑗
matches with 𝒙3

𝑘
, but 𝒙1

𝑖
may not match

with 𝒙3

𝑘
). Our GWMAC, however, aligns multiple modalities jointly

with a single barycenter, which naturally owns better alignment

consistency. Additionally, MVC-UM has high-complexity so that

its efficiency may be questionable when the number of samples is

large, as shown in Table 2.

Focused on the HandWritten dataset, we further visualize the

learning results obtained by our method in Figure 2. In particular,

Figure 2(a) shows the learned optimal transport matrix correspond-

ing to a representative modality (i.e., 𝑻 ∗
2
). We can find that the 2,000

samples of the dataset are assigned to 10 clusters with high accu-

racy, which demonstrates the rationality of the optimal transport

we have learned. Based on such optimal transport matrices, we can

derive the fused kernel matrix and reveal the clustering structure

of the data, as shown in Figure 2(b). Furthermore, we derive the

latent codes of each modality through the encoders and compute

the kernel matrix of the samples directly, i.e., {𝑲𝑚}𝑀𝑚=1
. Addition-

ally, given well-aligned multi-modal data, we visualize

∑𝑀
𝑚=1

𝑲𝑚
in Figure 2(c). The result reflects the clustering structure of the

data with high accuracy, which demonstrates the rationality of the

encoders learned by our GWMAC method.

Table 3: The performance of various methods on clustering
unseen but well-aligned multi-modal data.

Algorithms MVC-UM GWMAC

Datasets ACC NMI ACC NMI

HandWritten - - 0.8368 0.8271
Caltech 7 0.2910 0.1917 0.3738 0.4845

ORL 0.2118 0.7603 0.5624 0.8284
Movies 0.2014 0.2379 0.2032 0.2613

Prokaryotic 0.4099 0.0981 0.6179 0.4496
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Figure 3: In each subfigure, we visualize the NMI (left) and
the significance of noisy modality (right) that change to the
number of training epochs. In the NMI plots, the red lines
are the results achieved based on the “default” data.

5.2.2 Inductive inference and generalization power. Classic
methods, like MVKSC, MultiNMF, and MVC-UM, are normally de-

pendent on transductive inference when new data comes, while

our GWMAC method can achieve inductive inference by directly

obtaining the latent codes of new data through the learned en-

coders. Therefore, our method is more efficient than the baselines

in the testing phase. To demonstrate the generalization power of

the encoders learned by our method, we design the following exper-

iment. For each dataset, we split the multi-modality data randomly

into 80% unaligned training data and 20% well-aligned testing data.

Then we apply MVC-UM and GWMAC to learn the clustering mod-

els on the training data. For MVC-UM, we obtain the latent codes

of testing data in a transductive way, i.e., fixing the learnt latent

factors and optimizing the latent codes. For our GWMAC method,

we obtain the latent codes of the testing data through the learnt

encoders directly, and then we concatenate the latent codes of all

the modalities and apply K-means to cluster the testing data. The

clustering results are shown in Table 3. We can find that our GW-

MAC outperforms the MVC-UM significantly and consistently. This

result indicates that the encoders derived by our method own good

generalization power, which can obtain high-quality latent codes

for new data.

5.2.3 Robustness to noisymodality. Additionally, our GWMAC

method is robust to noisy modality because it learns the significance

of different modalities automatically. As a result, it tends to suppress

the influence of noisy modalities by reducing its significance.

To verify its robustness, we design the following experiment on

ORL and HandWritten datasets. We further add a noisy modality

whose samples are totally random noises to each dataset, and the

number of samples in this noisy modality is just the same with
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Figure 4: (a) The t-SNE plots of the latent codes learned with and without the entropic regularizer. (b-d) The influences of
various hyperparameters on the performance of our method for some representative datasets.

that of the original dataset while the sample dimension is set from

{20, 50, 100, 150}. Applying our method to the data with the noisy

modality, we visualize its performance on NMI and the significance

of the noisy modality in Figure 3. We can find that as the values of

the training epochs increase, the significance of the noisy modality

reduces rapidly, and the performance of our method converges

accordingly and approximately to the NMI achieved on the original

dataset. Under different sample dimensions, we can still get the

similar phenomenons even if the dimension of the noise is high. In

other words, our GWMAC method is able to eliminate the effect of

noisy modalities during training.

5.2.4 The necessity of entropic regularizer. Although learn-

ing the significance of modalities without any regularizer helps

to remove noisy modalities as shown in Figure 3, the significance

tends to be over-sparse and our GWMAC may focus too much on

a single dominated modality. Therefore, we impose the entropic

regularizer on the significance of modalities when learning our

model. To demonstrate the necessity of the entropic regularizer, we

train our encoders with and without the regularizer, respectively,

on HandWritten’s (well-aligned) samples. For each model, we con-

catenate the latent codes of different modalities and visualize the

t-SNE plot of the latent codes in Figure 4(a). We can find that with

the help of the regularizer, the clustering structure of the represen-

tations is less noisy. Based on the results in Figures 3 and 4(a), we

need to achieve a trade-off between the robustness to noise and

the usage of multi-modal information. Empirically, using small 𝛾 ,

i.e., 𝛾 < 10
−3
, could lead to the stable performance as shown in

Figure 4(b).

5.2.5 Robustness to other hyperparameters. Besides𝛾 , we fur-
ther consider three more key hyperparameters and quantitatively

analyze their influences on our method, including the bandwidth 𝜎

of the kernel function, the inner iteration number 𝐿 for computing

barycenters, and the types of loss function. For each hyperparame-

ter, we fix the remaining hyperprameters and test our method under

different settings. Figures 4(c) and 4(d) visualize the performance

of our method under different 𝜎’s and 𝐿’s, respectively. We can

find that our GWMAC method is robust to the changes of 𝜎 and 𝐿,

whose performance is relatively stable when the hyperparameters

change in wide ranges. With respect to the loss function in (12), we

consider three kinds of loss function: GW distance, MSE loss, and

Table 4: The performance under different loss functions

Datasets Caltech 7 ORL Prokaryotic

Loss ACC NMI ACC NMI ACC NMI

ˆ𝑑gw 0.3596 0.4826 0.5348 0.7082 0.5587 0.3409
MSE 0.3596 0.4915 0.5496 0.7205 0.5587 0.3409
CE 0.3507 0.4697 0.4503 0.6608 0.5534 0.3062

CE loss. Table 4 shows the quantitative performance of our method

using different loss functions, and we can find that the learning

results obtained based on the GW distance and the MSE loss are

comparable, while using the CE loss may lead to the degradation

of the performance.

6 CONCLUSION
We have developed a novel Gromov-Wasserstein multi-modal align-

ment and clustering (GWMAC) method. This method achieves the

alignment and the clustering of multi-modal data jointly, and can

be applied to both aligned and unaligned multi-modal data. The

proposed method outperforms state-of-the-art multi-modal clus-

tering methods in various datasets. In the future, we will further

consider adding a feature selection mechanism before clustering to

eliminate abnormal or noisy samples, which may leads to a barycen-

ter paradigm under the partial Gromov-Wasserstein distance. We

also plan to extend our Gromov-Wasserstain barycenter to a fused

Gromov-Wasserstain barycenter, leveraging not only the structural

information of data pairs but also the attribute information of data

points when aligning different modalities.
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